Philadelphia University

Faculty of Engineering

Dept. of Computer Engineering Final Exam, Second Semester: 2014/2015

Course Title: Real-Time Computer Control Systems	Date: 18/6/2014
Course No: (630512)	Time Allowed: 2 Hours
Lecturer: Dr. Mohammed Mahdi	No. of Pages: 2

Question 1:

Objectives: This question is about the basic concepts RTCCS.

Answer the following briefly "along with simple example": -

- 1. In RTCCS the sampling rate selection is considered as a critical design parameter.
- 2. Micro controller based system has many advantages compared with the analog one.
- 3. Supervisory control scheme was used to achieve some certain jobs.
- 4. Sequence control scheme is used extensively in batch systems.

Question 2:

Objectives: This question is about DDC system design and data transfer techniques.

Given the digital control refrigerator system.

It is required to: -

- 1. Sketch its minimum hardware I/O interfacing scheme.
- 2. Explain data transfer techniques that may one use for such system.
- 3. What kind of digital PID controller do you suggest for the motor control?

Student Name:

Student Number:

(10 Marks)

(10 Marks)

ing

Question 3:

Objectives: This question is about Task scheduling, RT languages, and Z.O.H

Explain the following: -

- 1. Suspended task state.
- 2. Ready list in Round-Robin scheduling strategy.
- 3. Real Time software requirements.
- 4. Efficiency measure in real time languages.
- 5. Zero Order Hold effect on the overall system performance.

Question 4:

(10 Marks)

Objectives: This question is about discrete time systems.

- A) For the following discrete function $X(z) = \frac{2z^3 + z}{(z-2)^2(z-1)}$, find
- X(k) using z^{-1} .
- X(0) and X(∞)
- sketch the system simulation diagram.

Knowing that
$$z^{-1}\left\{ \frac{z}{(z-2)^2} \right\} = k(2^{k-1})$$
.

B) Apply Jury test to check the absolute stability of the following characteristic equation:

$$P(z) = z^4 - 0.6z^3 - 0.81z^2 + 0.67z - 0.12$$

(10 Marks)